\[ e^{j \pi} + 1 = 0 \]
\[\begin{equation}
\sum_{n=0}^\infty q^n = \frac{1}{1-q}, \quad q \in \mathbb{R}, |q| < 1.
\label{eq:1}\end{equation}\]
cf. eq \ref{eq:2}.
$\mathcal{A,B}, \boldsymbol{\varPsi}$
$\mathbb{A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z}$
\[\begin{equation}f_{X,Y}(x,y) \ = \ \frac{e^{-(x^2+y^2)}}{Z} \label{eq:2} \end{equation}\]
\[\begin{equation}f_{X,Y}(x,y) \ = \ \frac{e^{-(x^2+y^2)}}{Z} \label{eq:2} \end{equation}\]
$\sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6}$