$\mathbf{\vec{T}}=\sum\limits_{r=1}^{R}{{{{\mathbf{\vec{H}}}}^{\left( r \right)}}\underset{2}{\mathop{\bullet }}\,}{{\mathbf{A}}^{\left( r \right)}}\underset{3}{\mathop{\bullet }}\,{{\mathbf{B}}^{\left( r \right)}}$
array:
$$ \begin{array}{*{20}{l}}
{}&{{{{\mathbf{\vec H}}}^{\left( r \right)}} \in {\mathbb{C}^{I \times L \times P}}} \\
{}&{{{\mathbf{A}}^{\left( r \right)}} \in {\mathbb{C}^{J \times L}}} \\
{}&{{{\mathbf{B}}^{\left( r \right)}} \in {\mathbb{C}^{J \times L}}}
\end{array}$$
align:
\[\begin{align}
& {{{\mathbf{\vec{H}}}}^{\left( r \right)}}\in {{\mathbb{C}}^{I\times L\times P}} \\
& {{\mathbf{A}}^{\left( r \right)}}\in {{\mathbb{C}}^{J\times L}} \\
& {{\mathbf{B}}^{\left( r \right)}}\in {{\mathbb{C}}^{J\times L}} \\
\end{align}\]
gathered:
\[\begin{gathered}
{{{\mathbf{\vec H}}}^{\left( r \right)}} \in {\mathbb{C}^{I \times L \times P}} \\
{{\mathbf{A}}^{\left( r \right)}} \in {\mathbb{C}^{J \times L}} \\
{{\mathbf{B}}^{\left( r \right)}} \in {\mathbb{C}^{J \times L}} \\
\end{gathered} \]
\[\begin{gathered}
{{{\mathbf{\vec H}}}^{\left( r \right)}} \in {\mathbb{R}^{I \times L \times P}} \hfill \\
{{\mathbf{A}}^{\left( r \right)}} \in {\mathbb{Z}^{J \times L}} \hfill \\
{{\mathbf{B}}^{\left( r \right)}} \in {\mathbb{C}^{J \times L}} \hfill \\
\end{gathered} \]
No comments:
Post a Comment